Monday 2 November 2015

Solutions to the Inefficient Use of Water in Agricuture

Water is wasted in agriculture. Previous blog posts have already explored this issue and examined the solution of drip irrigation.

In this blog post a range of solutions to inefficiencies in water use within agriculture will be critically examined in the extensive academic literature.
One of the most interesting articles which didn’t just focus on agriculture, came from Abdul-Rahmann et al. (2011) which in summary talked about using water from fisheries to irrigate agricultural land. The use of this water means that water is not wasted and that the water would contain natural fertilizer (from fish excrement). Although this research was not focused on Africa, it is an interesting idea to integrate two different types of agriculture (fish farming and arable farming). However, to be critical not all countries (in Africa) would have developed “modern” fisheries, such as the ones described in the article, that can capture the water and use it for irrigation and a project of this nature (as the article mentions) would be expensive. Landlocked African countries such as Zambia may not be able to afford this or have enough fish farms to make this a viable option.
Small scale fishing in Tanzania (Sand and Land)
Increasing efficiencies in agriculture does not just come in the form of the technology but also in the form of low cost strategies. 
Furthermore, there are other factors that need to be considered as illustrated in Wallace’s (2000) article. The relief and gradient of agricultural land plays an important role in determining the efficiency of water use within both irrigated and non-irrigated farming. Where land is steep surface runoff is high and infiltration into the soil is reduced (so water is not used for plant growth). Runoff of this kind is made up of 25-30% of rainfall in Niger (Rockstrom 1997) and up to 40% in Mali (Stroosnijder and Hoogmeed 1984). It is clear from these studies that reducing the amount of water occurring as surface runoff is important. Extensive work has been done by Lal (1989 and 1991) into such strategies to stop runoff. Adding materials to the land surface such as leaving crop residues or contour hedgerows can reduce runoff by capturing the water and are low cost and accessible to small scale African farmers. Wallace praises the use of mulches to reduce runoff but other studies have suggested that the use of mulches reduce direct soil evaporation (Barros and Hanks 1993). The effects of mulches, and their usefulness, will therefore vary depending on its relative influence on evaporation and infiltration. This would vary with frequency and quantity of rainfall.
Natural and environmentally beneficial, mulches are useful within agriculture (source)
Wallace’s article is extensive in its discussion of inefficiencies in water use within agriculture and provides solutions to problems that I had not considered – I seemed to focus my thoughts on “hard” engineering technologies but clearly low cost solutions such as mulches can be just as effective (and more accessible for small scale farmers).


Inefficiencies in water use within agriculture are huge and the literature and research into them and solutions is even greater and thus future blog posts will continue to explore this issue. 

*please note that Lal 1991 is only available in book form as is Rockstrom 1997. 

3 comments:

  1. Hi Max interesting post on solutions for inefficient water use! However I was wondering what solutions are possible where there are (climatic) constraints on the amount of water available? For example a report from the BBC mentioned that there are concerns about agricultural production and food security in Ethiopia due to prolonged drought so how can water be used efficiently in a situation like this?

    ReplyDelete
    Replies
    1. Clearly in areas where water is scarce (due to climatic constraints) a balance between different water demands has to be met. The solutions to inefficient water use (those above) are still useful and can still be implemented but it is more of a question about how water should be distributed between different sectors in society.

      Delete
    2. Really interesting point on how it is about water distribution between sectors! Thanks for answering my question.

      Delete